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NCAA Bracket Competition
Who is has filled out an NCAA bracket before?
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NCAA Bracket Competition
Who has won an NCAA bracket competition?
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NCAA Bracket Competition
Who has lost a bracket competition to someone that does not know what
a basketball looks like?
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Talk Overview

General modeling strategies for NCAA tournament competitions
Matchup effects modeling framework
Uncertainty inherent in NCAA tournament & competitions
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Competition Types
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Loss Functions: Bracket

L(y, ŷ) = cδ(y 6= ŷ)

L(y, ŷ, r) = crδ(y 6= ŷ)
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Loss Functions: Probabilistic Prediction

L(y, p) = −y log(p)−(1−y) log(1−p)

This is a proper scoring rule.
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Relevant Data: Team Characteristics

There are many important characteristics useful for modeling the strength
of an NCAA basketball team:

Winning percentage,
Point differential,
Strength of schedule,
Conference affiliation,
. . .
Rebounding percentage,
Adjusted offensive efficiency, and
Adjusted defensive efficiency.
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Relevant Data: Ratings and Rankings

Rather than using team characteristics, there are many available rating
and ranking systems:

ESPN BPI,
Sagarin,
RPI,
Pomeroy, and
Logistic Regression/Markov Chain (LRMC).
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Relative Strength Models

Typically the model framework for predicting winner of games (or winning
probabilities) can be formulated as a relative strength model. Formally this
can be expressed as:

yij = f (θi ,θj)

such as
linear model: yij = βhome + (θi − θj)βD + εij ,

where εij ∼ N (0, σ2)
or

logistic regression: yij ∼ Bernoulli(pij)
where logit(pij) = βhome + (θi − θj)βD
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Transitivity

Note that relative strength models of this type are strictly transitive, where
PA>B denotes the probability that team A beats team B. Under transitive
models,

{PA>B > 0.5 ∪ PB>C > 0.5} ⇒ PA>C > 0.5.
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Bayesian Relative Strength Models

Bayesian Linear Model

Prior β ∼ N (β; m, s)
Likelihood β|Y ,X ∝ N (β; β̂,Σ)

Posterior β|Y ,X ∼ N (β;µ,Σβ)
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Bayesian Relative Strength Models

Bayesian Linear Model

Predictive: p(Y ∗|X∗,Y ,X)

=
∫

p(Y ∗|X∗, β)p(β|Y ,X)dβ

P(Y ∗ < 0) =
∫ 0

−∞
p(Y ∗|X∗,Y ,X)dY ∗
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Analytics for Bracket Competitions
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Analytics for Kaggle-Style Competitions

A substantial challenge in predictive
modeling of sports competitions, and
major discussion point, is predicting
upsets. Consider ”predicting upsets”
as a comparison of the probabilistic
predictions for competitors.

Distribution of Predictions

P(Upset)

0.0 0.1 0.2 0.3 0.4 0.5

Your 
 Prediction
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Matchup Effects Motivating Quote

“Well, it’s hard to predict a particular team. You have to look at the
higher seed and see, do they overwhelm the smaller school or the lower
seed? Can they overwhelm someone with their athleticism or length or size
or quickness or speed? Do they play a particular style of the pressure
defense? And I think I look at the lower seed then and say, can they
counter the higher seed’s strengths? Do they shoot the three point shot
well? Do they have athleticism at certain positions? Do they play a
particular style that will give the higher seed trouble?”

Andy Enfield
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NNME Intuition

5 10 15 20

0
5

10

Games

O
bs

er
ve

d 
R

es
ul

ts

Nearest Neighbor Matchup Effects motivation 20 / 36



NNME Intuition
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Outline of the NNME

Estimation of the nearest-neighbor matchup effects has three components:

1. Fit a relative strength model,
2. Identify neighbors for the matchup, and
3. Calibrate the matchup adjustment.
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Relative Strength Model

Consider the simple relative strength model using the Sagarin ratings and
home court effect.

Yij = βhome + DijβD + εij , εij ∼ N (0, σ2)
where Dij = Sagarini − Sagarinj

Note that relative strength models of this type are strictly transitive.
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Identifying Neighbors

Identifying neighbors first requires specifying team characteristics and a
distance function between teams. We used a collection of data from Ken
Pomeroy’s www.kenpom.com including:

Effective Height
Adjusted Tempo
Effective Field Goal Percentage Defense
Offensive Rebound Percentage
Block Percentage
Steal Rate
Three Point Field Goal Contribution
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Uniformly Weighting Characteristics
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Bayesian Visual Analytics
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Bayesian Visual Analytics
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Finding Neighbors

For each particular matchup, say Dayton vs. Stanford, identify past
opponents to see who is most like the current opponent.

Teams Dayton played similar to Stanford

California

George Mason

Georgia Tech

George Washington

Gonzaga

Teams Stanford played similar to Dayton

Cal Poly

California

Oregon

Pittsburgh

Utah
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Matchup Adjustment Notation

Let Rj(i) = 1
K

∑
k∈Nj (Yik − µik), where Nj are the neighbors for team i

with respect to team j, Yik is the observed point differential between team
i, and team k and µik is the expected point differential between team i
and team k.

Then φij = ρ(Ri(j)−Rj(i)), where ρ controls how much information is
passed from the neighbors.
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Predictive Distribution

Then using the relative strength model previously described, the predictive
distribution becomes:

Yij |Xij = βhome + DijβD + φij + εij

Effectively φij shifts the predictive distribution and results in a
non-transitive model.
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Estimating Model Parameters

Using data across NCAA tournaments from 2007 - 2013, the model
parameters are estimated.

βhome βD σ2 ρ
Posterior mean 3.87 0.913 121.6 0.167

Credible interval (3.83,3.91) (0.909,0.916) (120.0,123.2) (0.012,0.454)

The positive credible interval suggests a moderate, but meaningful result
from the matchup effect.
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Demonstration: 2014 NCAA Tournament

Largest shifts in expected point spread (φij).

Team1 Team1 R1(2) R2(1) φ12
Cal Poly Wichita St. 7.52 -0.44 1.59
UConn St. Joes 0.70 -8.80 1.90
Dayton Stanford 14.97 -0.55 3.10
Dayton Syracuse 8.65 -2.83 2.30

Kentucky Michigan 2.2 -5.87 1.62
UMass Tennessee -1.75 7.16 -1.78

Memphis Virginia -8.09 4.74 -2.57
Michigan Tennessee -2.85 6.55 -1.88
Michigan Texas -5.87 5.12 -2.20
Syracuse W.Mich 6.27 -5.52 2.36
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Closer Look: 2014 NCAA Tournament

Team Neighbor Point Diff. E[Point Diff] Residual
Dayton California 18 -0.9 18.9
Dayton Gonzaga 5 -12.4 17.4
Dayton George Mason 17 3.4 13.6
Dayton Georgia Tech 10 -5.3 15.3
Dayton George Washington 10 0.4 9.6

Stanford California -7 4.1 -11.1
Stanford California 11 -2.3 13.3
Stanford Oregon 2 -8.9 10.9
Stanford Pittsburgh -21 -5.3 -15.7
Stanford Cal Poly 17 13.8 3.2
Stanford Utah 1 4.9 -3.9
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NNME Concluding Thoughts

1. Evaluated on small number of data points leads to
very uncertain outcomes, even with quality predictions

2. Does this contest actually have a proper scoring rule?
3. Alternative strategies (maximizing expected return).
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