Using Random Forests to Estimate Win Probability Before Each Play of an NFL Football Game

Dennis Lock
Dan Nettleton

New England Symposium on Statistics in Sports
Introduction

• Idea
 – At any specific moment of an NFL game, find the probability a particular team will ultimately win the game.
 • For example, what’s the probability a team receiving the ball on the 20 yard line down 3 with 2 minutes left will go on to win the game?
 • We combine pre-play variables to estimate win probability (WP) at any moment in an NFL game using a random forest methodology.
Introduction

• Idea
 – Demonstrate the use of WP estimates:
 • Fan interest
 – Plot the course of a game using win probability
 – Real time win probability estimation
 • Evaluate plays and play calling decisions
 – Example: Was Baltimore's decision to take an intentional safety late in the 4th quarter of Superbowl 47 a good one?
Introduction

• Motivation
 – Develop an alternative to Brian Burke’s win probability found at www.advancednflstats.com
 – Why?
 1. Estimate WP empirically through objective “binning”.
 2. Include information measuring the quality of both teams competing.
 3. Develop a method that can be easily repeated on a new set of variables, especially in a different sport.
Random Forest Method

• Data
 – Recently (since 2000) the NFL began releasing play-by-play data from all games, regular and post season.
 • We use the seasons 2001 – 2011 as training data and the 2012 season as test data.
 • Raw play-by-play data was downloaded from: www.armchairanalysis.com
Random Forest Method

• Data
 – Observational Unit: A pre-play situation observed with respect to the offensive team.
 • Example: 1st and 10 on the 20 yard line down by 3 with 2 minutes remaining.
 • Score Difference = -3 implies the team with the ball is losing by 3.
 • Win probability is estimated for the offensive team.
Random Forest Method

• Data
 – Variables:
 • Binary Response, $y_i = I(\text{Offense Won}_i)$
 • Predictor variables: down, yards to go for a first down, field position, seconds remaining, score difference, adjusted score difference, total points scored, time outs remaining, and the Las Vegas point spread

$$\text{adjusted score difference} = \frac{\text{score difference}}{\sqrt{\text{seconds remaining}}}$$
Random Forest Method

- **Random Forest**
 - A random forest is a combination of either classification or regression trees.
 - A tree is effectively a nearest neighbors method of binning observations on values of the predictor variables in order to maximize within-bin homogeneity of the training responses.
 - We chose to use a random forest of regression trees.
 - A regression tree takes the average of the response values in a resulting bin as a predicted response for future observations in that bin.
Random Forest Method

• Random Forest
 – Each tree of the random forest has two adjustments in order to grow a variety of trees:
 1. Each tree is grown on a bootstrapped version of the original sample.
 2. At each split of the training observations, only a subset of the variables are considered as candidates for deciding the splitting rule.
Random Forest Method

• Why Random Forest?

 1. Allows for complex unknown interactions between predictor variables
 • Example: Score difference and time interact, but we don’t know how.

 2. Predictions are entirely on empirical evidence
 • Minimal dangerous assumptions
Random Forest Method

• Why Random Forest?
 3. Nicely handles outliers
 • Blowout victories aren’t overly influential
 4. Easily obtain variable importance measurements
 5. Good predictability!
Results

- Performance
 - Test set Mean Absolute Error by quarter:

<table>
<thead>
<tr>
<th>Quarter</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>0.408</td>
<td>0.346</td>
<td>0.276</td>
<td>0.199</td>
</tr>
</tbody>
</table>
Results

• Performance
Results

- Super Bowl 47 (BAL 34 – 31 SF)
Results

• Play Calling
 – By taking an intentional safety Baltimore increased there WP from 91.8% to 94.2%.
 – Changes in Win Probability (ΔWP) such as this can be used to evaluate play calling decisions.
 – For instance by kicking a surprise onside kick (successfully) in Superbowl 44, the Saints increased their win probability by 7%.
Results

• Play Calling
 – We can also use average ΔWP to evaluate play calling decisions, examples:
 • The average ΔWP for surprise onside kicks is approximately $+0.02$.
 • ΔWP and average ΔWP could be used to make real-time decisions on plays such as 4th down decisions.
Results

• Superbowl 42 (NYG 17 – 14 NE)

Estimated Win Probability

Burress Touchdown Catch ($\Delta WP=0.39$)
Tyree Helmet Catch ($\Delta WP=0.12$)
Results

• Influential Plays
 – We can judge the most influential plays from a set of plays (season, game, etc.) using ΔWP.
 • The best Super Bowl play of the last 12 years as judged by ΔWP was James Harrison’s 100 yard interception return before halftime in 2008 ($\Delta WP=0.510$).

 • The best play of the 2012 season was a 39 yard touchdown reception by Cecil Shorts down 5 with 20 seconds remaining ($\Delta WP=0.710$)
Future Considerations

• Feature of the data
 – Each game has approximately 150 sequential observations all predicting 1 response value (Won or lost).
 • Independent observations?
 – No
 • Stochastic observations?
 – Maybe not

• We have attempted methods to account for these possible problems but none improve performance.
Future Considerations

• Other Sports
 – Extending the win probability to other sports
 • Easy in sports that have a clear “pre-play” situation like a possession in basketball or pitch in baseball.
 • May be more of a challenge in flow sports such as hockey or soccer.
Takeaways

• Two Takeaways
 – The Random Forest is a fairly simple and effective way of estimating win probability!

 – Estimated WP can have many uses.
 • “In any sport win probability is basically the holy grail of analytics.”
 -Brian Burke
Thank You!

Email: Dennis.F.Lock@gmail.com
Website: lockanalytics.com