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I
What are we trying to solve?

- How valuable are certain game situations?

- How do these values vary across teams and what can we
learn from that?

- Can we quantify how much a player contributes to
creating good goal scoring opportunities?
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-
Why is this hard?

- Hard to capture all of the information about game state;
off the ball movement is just as important as on the ball
movement

- Sparse data — we haven’t seen all possible combinations
of game situations, and those we have seen only have a

few data points

- How do you divide up credit?
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Markov Chains

- What do they do?

- Model the likely outcomes after a number of iterations based on the
probabilities of transitioning from one state to another

- Why are they useful?

- They allow us to look at all the possible ways a possession can
unfold

- Absorption states means possessions of arbitrary lengths are
handled nicely

- Downside?

- Assume that the current state is independent to the previous state
(i.e. it doesn’t matter how we got here, the probabilities of moving
to the next state are the same regardless of the past)
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Dataset

- Touch-by-touch data provided by StatDNA

- (x,y) coordinates

- event type

- defensive pressure
- defensive “state”

- English Premier League
- 2010/11 Season

- 123 matches
- Minimum of 11 matches per team
- ~100,000 “deliberate” actions or about 800 actions per match
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-
States

- 2 absorbing states: Goal or End of Possession
- [ set pieces
- 30 states defined by zonal location and defensive state

39 total states
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Set Pieces

- Penalty

- Short Corner

- Long Corner

- Short Free Kick

- Long Free Kick

- Shallow Throw-in
- Deep Throw-in
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Definitions

- Deliberate action — any action where a player moves
the ball in a controlled manner with an attempted outcome

- Deliberate: pass, shot, dribble, etc.
- Not deliberate: clearance, tackle, etc.

- Possession — a series of consecutive deliberate

actions performed by one team, only interrupted by a
deliberate action performed by the other team or the end

of a half.
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Transition Matrices

- Calculate the probability of moving from state S_ to S, for
all combinations of the 39 states

- Absorbing states are different, probability of remaining in
same state is 1 and moving to another state is 0.
- Once you are there you are stuck!

- Multiplying a transition matrix by itself will give you the
probability of ending up in a given state after 1 iteration

- Multiplication can be repeated until probability of ending in
an absorbing state converges (n=20)
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Transition Matrix
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Validation — expected vs. actual

Monte Carlo Bootstrapping

- 1000 samples with
replacement
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-
Comparing P(Goal)

- Column are teams ordered
by final standing

- Rows are P(Goal) for each
state

- As you move lower down the
table, teams find it harder to
score

- Notable exceptions are
Manchester City (3,
underperform offensively)

and Wolves (17,
overperform offensively)
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Results — Set Pleces

State P(Goal)

Long Free Kick 1

Deep Throw in B .09%_
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Corners
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Counter Attacks
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Now for the good stuff...
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Not all passes are created equal

- Existing metrics don’t take into account context of game
state

- Completed passes: back-pass, square-pass, through-ball that puts
teammate 1-on-1 with keeper are all weighted equally

- Goals: all are weighted equally, no matter how easy they were to
score

- Missed opportunities could still show up positively in metrics (i.e. a
saved penalty could be considered a shot on target)

Weight each action with incremental
improvement of P(Goal)

On Football Research and Consulting www.onfooty.com 22



How does it work?

State:
Goal
Scored
P(Goal)=
1

Player 1 Player 2 Player 3
State A State B State C

P(Goal)= P(Goal)= P(Goal)=
0.25 0.17 0.28

Player 1: Player 2: Player 3:
-0.08 +0.11 +0.72
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Another example

Player 1 Player 2 State:
Earns Takes Penalty
Penalty Penalty Missed
P(Goal)= P(Goal)= P(Goal)=
0.71 0.71 0

o o

Player 1: Player 2:
+0.56 -0.71

Player 1
State A

P(Goal)=
0.15

Player 1 is rewarded for earning the penalty and Player 2 is heavily penalized
for missing it.
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Thank you for listening and special
thanks to StatDNA for providing me
with awesome data and this wonderful
opportunity
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