Risk & NFL Play Calling

By Benjamin Alamar, PhD Menlo College

> New England Symposium on Statistics in Sports September 26, 2009

Play Calling

- Previous work examining play calling behavior in the NFL has noted to possibility of irrational behavior (Alamar 2006, Romer 2002, Winston 2009, Rockerbie 2008).
- Most analysis suggests, based on various measures of payoff, that teams run too much.
- The increased payoff could in theory be attributed to higher risk, therefore, given the risk reward tradeoff, teams may be rational by not passing more.

But what is risk?

- Rockerbie defines risk as the variance in yards gained/lost on a play of a given type (run or pass).
- But as the distribution of yards is not normal, higher variance is actually desirable.
- Given two plays of equal mean payoff, a coach should choose the play with a higher variance

Mean =5.34 Std. Dev. =8.525 N =139.364

Play Context

- To understand risk, we first have to put the outcome in the proper context:
 - 5 yards on 2 and 5 is great, and but on 3 and 6 it likely results in punt.
- Down, distance, yardline all effect how "good" the outcome of a play is.
- Expected points (known as expected runs in baseball work) provides context and a way to measure the value of each play.

The Expected Points Framework

- Issue of context addressed by utilizing an expected points framework.
- Expected points are the points a team scores on average given their current situation.
- Net expected points is the change in expected points that a play generates.
- Utilized in football previously (Winston 2009, Carroll et al 1989, Romer 2002)

Expected Points Formula

Expected Points_t = $F(Down_t, YardsToGo_t, Yardline_t)$

 $NEP_t = \text{Expected Points}_{t+1} - \text{Expected Points}_t + \text{Points Scored}_t$

- Could easily be expanded to include effects of "next drive" or rest of game or half
- For this work, the post play EP on turnovers is the negative of the expected points given the new game context.

Data

- Data used to estimate the equations is NFL play by play data from the 2005 to 2008 regular seasons (as provided my Football Outsiders)
- There are 220,326 plays in the data set
- Each play includes a variable for play type (run or pass) as well as the down, yards to go for a first, distance from the end zone, team on offense, team on defense and several other play descriptors.

Data (cont)

- From the play by play data a points on drive variable was created that calculates the total points scored on the drive
- An additional variable was calculated for the number of plays on the drive.

Estimation

- The expected points equation is estimated using a weighted least squares approach (weighted by # of plays on a drive).
- Fixed effects for each team year were included (ie: 49ers2005, 49ers2006, 49ers2007 & 49ers2008).
- Statistically significant results were obtained for all control variables with a weighted R² of 0.37.

Results of Estimation

Results of Expected Points Weighted Least Squares						
Regression						
Variable	Estimate	Std Error	t-value			
Constant	6.38	0.09	73.38			
Down	-0.49	0.01	-41.57			
Yards to Go	-0.07	0.00	-26.83			
Q1	-0.29	0.03	-8.71			
Q2	0.07	0.03	2.31			
Q3	-0.37	0.03	-11.22			
Distance to Goal	-1.18	0.01	-90.31			

Note: All estimates are significant at the 99% confidence level expect Q2 which is significant at the 95% level. Distance to goal is entered in natural log form.

Expected Points By Distance

Estimated Expected Points on First and 10 by Distance to the Endzone

Net Expected Points

- Using the estimated expected points for each play, Net Expected Points (NEP) were calculated for each play.
- As a "reality" check, the average NEP for each team for each season, for both offense and defense, were calculated.
- The top offenses and defenses, based on average NEP, were ranked.

Top Offenses and Defenses

Year	Offense	Average NEP	Year	Defense	Average NEP
2007	Patriots	0.27	2008	Steelers	-0.04
2006	Colts	0.26	2006	Ravens	-0.03
2007	Colts	0.24	2008	Eagles	-0.02
2008	Saints	0.23	2006	Bears	-0.02
2005	Bengals	0.22	2008	Ravens	0.00
2005	Colts	0.22	2008	Titans	0.00
2008	Chargers	0.22	2006	Jaguars	0.02
2007	Cowboys	0.22	2006	Patriots	0.02
2005	Seahawks	0.21	2005	Bears	0.03
2008	Broncos	0.20	2007	Buccaneers	0.03

Note: For all teams and all seasons, Offense NEP has a correlation with winning of 0.55 and Defense NEP has a correlation with winning of -0.54.

Expected Points and the Passing Premium

- Using plays only through the 3rd quarter in which the score difference was less than 11 points, the average NEP for passing plays and running plays was calculated
- The 0.06 difference between running and passing is statistically significant at the 99% confidence level
- Normal mean difference between running and passing results

Play Type	Mean NEP
Run	0.07
Pass	0.13

Measuring Risk

- Risk can now be thought of as the probability that a play will produce negative NEP (risk factor – rf)
- Comparing run plays and pass plays demonstrates that passing (rf = 0.57) is less risky than running (rf=0.62) for all plays.
- Looking at specific situations, the risk profile changes. On 1st and 10 running (rf=0.66) has a much higher risk than passing (rf=0.53), while on 2nd and 3 running (rf=0.35) has a lower risk factor than passing (rf=0.44).

Risk Variation by Play Type

Conclusion

- The existence of the passing premium is further confirmed by the use of the expected points framework.
- If team's passed more, they would increase their probability of winning by both achieving a higher mean NEP and a lower probability of negative NEP plays.
- Coach's insistence on balancing the run and pass seems to be irrational, as running creates a lower expected outcome with increased risk.