THE IDEA
I model a a basketball game as a sequence of transitions between discrete states. Specifically,
the model is a Markov chain, which specifies that the probability distribution of the next state depends only on the present state. A good Markov model for basketball must, in my opinion,
strike a compromise between being, on one hand, very detailed and complex, so as 10 cin strine of the relevant (and sometimes rare) events shat can occur during a game, and on the other
all all of the relevant (and sometimes rare) events that can occur during a game, and on the other
hand, simple enough to fit and interpet, so that inceresting strategic, questions can be answered. A minimum requirement for the complexity of the Markor model is that the exact
number of points scored by each team is determined by the transition count (i.e. the same number of points scored by each team is determined by the transition counnt
transition cannot lead to different numbers of points scored at different times).
THE DEFINITION OF THE STATES
The states of the Markov chain are defined in terms of three factors

1. Which team has possession (2): Home or Away
Home or Away
2. How that team gained possession (5): Inbound pass, Steal, Offensive Rebound, Defensive
Rebound, Free Throws.
3. The number of points that were scored on the previous possession (4): $0,1,2$, or 3 .

The largest possible model would have $2 \times 5 \times 4=40$ states, but since certain combinations of the 3 factors are impossible, the largest model (Figure 1a), has 30 states. Making certain
assumptions about the course of action in a basketbal game can further reduce the number of
 seriously affecting the usefulness of the model. The notation is relatively simple: Ait(2), for
example, means hat Team A gained possession via an inbound pass after 2 points were

THE GOALS OF FITTING THE MODEL
If a Markov model fits the data well, then it can provide a very detailed "microsimulation" of
 hese might be (1) In-game win probabilities for a given ream, (2) The expected number of defensive rebounds, and (3) The change in win probability as a function of the number of

PREVIOUS WORK
tal Stern (1994, JASA Vol. 89, p. $1128-1134$) developed a Brownian motion model for the stimates. Two specificic drawbacks to the Brownian motion model t that Stern mentions are (1) her relative strengths of two teams playing are not included in the model, and (2) Which teail second piece of information, and can be fift to the Madude the first as well. (Stern's model can be xtended to incorporate team strengths as well - although it hasn't actually been done to m
(nowledge.)

PILOT STUDY

An 18 -state model was fit using season-long summary data from the 2003 -2004 NBA season
States that corresponded to rare events were eliminated (so as to reduce the model to 18 States that corresponded to rare events were eliminated (so as to reduce the model to 1
staes) and the remaining transiion probabilities were estimated using statistics like 2 -pt FG $\%, 3-\mathrm{pt} \mathrm{FG} \%$, rebound $\%$ (offa and def.), steals and turnovers, for each team and its opponents. Win probabilities for each team, in a g ame vs. their average opponent, were estimated by
sinulating 100 games per team. These win probabilities are very close to the actual winning simulating 1000 games per team. These win probabilities are very close to the actual winning
percentages (Figure 2), suggesting that the Markov model does a good job of capturing the essence of play. That is, given estimates of ransition probabilities and of the number of
transitions in a game, the Markov model simulates realistic results.

Figure 2 : A Alot of a atual winning \% vs. predicted winning \% where predictions were made
using season-Iong summary statistics and simulations. On the scale of wins, the average usror was about 3.3 wins out of 82 games.

A Markov Model for Basketball

Figure 1b: Color key for Transitions

Kenny Shirley, Ph.D Applied Statistics Center

HOW DO WE COLLECT DATA?
The sequence of plays below occurred during the 1s quarter of the 4/6/07 Cleveland @ Washington game. CLE, the visitor, is coded as Team B in the Markov model. Notice the highlighted event: The standard play-by-play failed to record a WAS deflection following a CLE steal sometime between $2 \cdot 55$

Figure 4 b (above, right) attempls to answer the question of how important it is to know which team currenty has possession in order to estimate the win probability of the home team, as a function of the number of transitions leff in the game (which is never known, but
possibl can be estimated) and the home teams sead. The figure shows the difference in win probabilities for the home team for two starting points Ai(0) and Bi(0). Not swroisngty less imporant- in the lower right hand cormer of the plot, the difference is about zero. But as the number of transitions left decreases, the current possession of the ball becomes more important, untif for a very small number of possessions left, and a larger lead for the
home team, there is a great difference between win prohabilities for the situations Ai() and Bios) This confirms that the Rrownia
 THE NEXT STEP
If we model rows of the transition matrix using multinomial logit models, then we can incorporate effects for the individual teams into the transition probabilities, resulting in one "baseline" transition matrix, and then a unique transition matrix for every matchup between
teams. This model would most likely incorporate $4 \times 10 \times 3 \times 2=240$ parameters. In a basketball season, there are about 320.000
 the time being, we need more data! THANKS!

