THE IDEA

| model a game as a of 1 discrete states. Specifically,
the model is a Markov chain, which specifies that probability distribution of the next state
depends only on the present state. A good Markadefnfor basketball must, in my opinion,
strike a compromise between being, on one hang,defriled and complex, so as to capture
all of the relevant (and sometimes rare) eventsaha occur during a game, and on the other
hand, simple enough to fit and interpret, so thderesting strategic questions can be
answered. A minimum requirement for the compleritghe Markov model is that the exact
number of points scored by each team is determinethe transition count (i.e. the same
transition cannot lead to different numbers of moBtored at different times).

THE DEFINITION OF THE STATES

The states of the Markov chain are defined in tesfiiree factors:

1. Which team has possession (2): Home or Away

2. How that team gained possession (5): Inbound, {isal, Offensive Rebound, Defensive
Rebound, Free Throws.

3. The number of points that were scored on theipue\possession (4): 0, 1, 2, or 3.

The largest possible model would have 2 x 5 x 4 =states, but since certain combinations of
the 3 factors are impossible, the largest modejuéi 1a), has 30 states. Making certain
assumptions about the course of action in a baskethme can further reduce the number of
states. If one for example, that 4-point plays or loose ball fouls

following missed free throws are impossible, thentain states can be elimil 1 without
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seriously affecting the usefulness of the modek Tbtation is relatively simple: Ai(2), for
example, means that Team A gained possession viabmund pass after 2 points were
scored.

THE GOALS OF FITTING THE MODEL

If a Markov model fits the data well, then it caroyide a very detailed “microsimulation” of

a basketball game. Quantities of interest can lmepated via simulation. Some of
these might be (1) In-game win probabilities fogisen team, (2) The expected number of
points scored in a possession gained in differeaysw such as offensive rebounds vs.
defensive rebounds, and (3) The change in win pithaas a function of the number of
possessions in a game; i.e. how useful a strateigyd “slow down the game?”

PREVIOUS WORK

Hal Stern (1994, JASA Vol. 89, p. 1128-1134) depelb a Brownian motion model for the
progress of sports scores that fits well for basadét yielding good in-game win probability

Two specific to the Brownianion model that Stern mentions are (1)
The relative strengths of two teams playing areimcitided in the model, and (2) Which team
has possession is not included in the model. Thekdtamodel certainly incorporates the
second piece of information, and can be fit toudel the first as well. (Stern's model can be
extended to incorporate team strengths as wellheadh it hasn't actually been done to my
knowledge.)

PILOT STUDY

An 18-state model was fit using season-long sumrdaty from the 2003-2004 NBA season.
States that corresponded to rare events were eliein(so as to reduce the model to 18
states), and the remaining transition probabilitiese estimated using statistics like 2-pt FG
%, 3-pt FG%, rebound % (off. and def.), steals tamdovers, for each team and its opponents.
Win probabilities for each team, in a game vs. rtlmierage opponent, were estimated by
simulating 1000 games per team. These win proliakilare very close to the actual winning
percentages (Figure 2), suggesting that the Markouel does a good job of capturing the
essence of play. That is, given estimates of ttiansiprobabilities and of the number of

transitions in a game, the Markov model simulagadistic results.

2003-2004 Predicted vs. Actual

RSquared = 0935

Predicied

05 05

Acual
Figure 2: A plot of actual winning %vs. predicted winning %, where predictions were made

using season-long summary statistics and simulations. On the scale of wins, the average
error was about 3.3 wins out of 82 games.
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Figure 1a: Points Scored for each Transition, where Team A is the home team; gray boxes are transitions with zero probability.
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Figure 3: Estimated transition probabilities for 30-state model without incorporating team-specific variables. A Bayesian model with a flat Dirichlet prior was
used to estimate each row of the transition matrix as a multinomial distribution. Also, data was pooled for estimating transition probabilities for rows in which
ateam acquired possession the same way. The last column contains the expected number of points scored in the next transition, given the current state.

HOW DO WE COLLECT DATA?

The sequence of plays below occurred during thguarter of the 4/6/07 Cleveland @ Washington gadié, the visitor, is coded as Team B in the

Markov model. Notice the highlighted event: Thenstard play-by-play failed to record a WAS y a CLE steal between 2:55
and 2:39, whereas this event is represented tanaition in the Markov model, from state Bs toei(0).
ESPN plz -play Markov Model
Event (CLE) e Event (WAS) State | vent
Etan Thomas makes Zoot hook shot (Antomio Daniels assists] Bi(2) |CLE ibound (WAS made 29t FG)
3.08[tan Thomas blocks LeBron James's 6-foot jumper
|Antonio Daniels defensive rebound As |WAS steal (block)
3.02|Anderson Varejao personal foul (Antawn Jamison draws the foul) Ai(0) _|WAS inbound (CLE non-shooting foul)
3:02[Eric Snow enters the game for Sasha Paviovic
3:02[Donyell Marshall enters the game for Drew Gooden
ntawn Jamison bad pass (Donyell Marshall steals) Bs__|CLE steal
Bi(0) CLE inbound (WAS deflection)

[Janis Hayes defensive rebound

Ad(0) |WAS def_rebound (CLE miss 2pt FG)
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ade a 2-point basket
issed FG or all FTs. and got offensive rebound
ot fouled

and got fouled
and got fouled
issed FG or all FTs and other team got defensive rebound

ade 2-point F
de 3-point F

ade 3-point FG_or all 3 FTs

el block_turnover vithout whistle biow

issed FG or all FTs and bal tipped OB by oflense
Ball thrown away OB
Offensive foul
3-second violation
Deflection by defense
Timeout called
Non-shooting. non-bonus foul

Defense knacks rehound OB

Technical Foul

Offensive Foul widefensive team in bonus
WMiss last FT_loose ball foul on defense
Made last FT

d last FT_ tipped OB by offense

55 last FT_loose ball foul on offense
55 last FT._tipped OB by defense

5 last FT_offensive rebound

5 last FT_defensive rebound

THE FIT OF THE MODEL

The model was fit to a very small sample of 18 tprar(4.5 games) of NBA
basketball from the 2006-2007 season. There we62 Iransitions recorded in
this sample, yielding an estimate of about 260sitams per game. Figure 3
contains Bayesian estimates of the transition phitiias, in which states that
shared the same method of gaining possession obahevere constrained to
have the same transition probabilities. With moegagd this constraint can be
lifted, but with such a small sample, | think threnbfits outweigh the costs.

The number of points scored from eack #&tatalculated and displayed
in the rightmost column of Figure 3. For the horearh (Team A), offensive
rebounds are the best way to gain possessionwetloby steals, defensive
rebounds, and finally the inbound pass (free thr@msn't as interesting to
analyze here). For the away team (Team B), sungligi defensive rebounds
produce the most points on average. | strongly exttsghis is an artifact of the
small sample and that with more data, the expeptedts vector for the away
team would look much like that for the home tearezept slightly less.

Figure 1b: Color key for Transitions

To estimate the total number of points scored bghe®am in a full game using the Markov model, dtjealculate the stationary
distribution of the transition matrix, which yieldse long-run probabilities of being in each stated multiply this by the expected points
vector, and then multiply the product by the estedanumber of transitions in a game, which is al2@@. This yielded an expected score
of 96.8 —91.4 in favor of the home team, whichoisghly consistent with other estimates of totahpand home court advantage.

WIN PROBABILITY AS A FUNCTION OF THE NUMBER OF TRARSITIONS AND
WHICH TEAM HAS POSSESSION

How does the number of transitions in the gamecaffee probability of the home team winning? Sittoe home team is the favorite, the
more transitions that occur, the higher shouldheeprobability the home team wins. Interestingligufe 4a (below, left) shows that this
probability is almost constant for the entire ranfieealistic numbers of transitions — the (averadushe team always has about a 61-65%
chance of winning! This result seems to suggestttfearandomness inherent in each possession swtampgfference in win probabilities
for a wide range of transition counts - a somewhaprising find that needs closer inspection. If thedel proves to be a good fit, then
this result means that there is no use in “slowiogmi' or “speeding up” the game in order to gairtrategic advantage — just make more
shots!

P(Win) as a function of Number of Transitions Difference in P(Win) due to Possession
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Figure 4b (above, right) attempts to answer thestjore of how important it is to know which team i@ntly has possession in order to
estimate the win probability of the home team, dsnation of the number of transitions left in thame (which is never known, but
possibly can be estimated), and the home teantk Tz figure shows the difference in win probaisititfor the home team for two
starting points: Ai(0) and Bi(0). Not surprisinglgs the number of transitions remaining increabescurrent possession of the ball is
less important — in the lower right hand cornertaf plot, the difference is about zero. But as timiper of transitions left decreases,
the current possession of the ball becomes morertant, until for a very small number of possessilrfis and a larger lead for the
home team, there is a great difference betweenpwababilities for the situations Ai(0) and Bi(0). i§iconfirms that the Brownian
motion model misses some potentially important riméation near the end of a game, because it doasstunt for which team
currently has possession.

THE NEXT STEP

If we model rows of the transition matrix using tmbmial logit models, then we can incorporate afefor the individual teams into
the transition probabilities, resulting in one “blise” transition matrix, and then a unique trainsitmatrix for every matchup between
teams. This model would most likely incorporate 40x 3 x 2 =240 parameters. In a basketball seabene are about 320,000

[DeShawn Stevenson makes 16-foot jumper (Antawn Jamison assists) | Bi(2) [CLE inbound (WAS made 2pt FG)
2:10[LeBron James makes two point shot (Efic Snow assists)

[Etan Thomas shooting foul (LeBron James draws the foul) Bi{2) [CLE FT (CLE made 20t FG. WAS shooting foul)
210 [Roger Mason enters the game for DeShawn Stevenson
210[LeBron James makes free throw 1 of 1 A1) _|WAS inbound (CLE made FT)

total. With about half a season of dhthink fitting the large model with team strehgtarameters would be possible. For
the time being, we need more datalANKS!
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