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Figure 1b: Color key for Transitions

Figure 1a: Points Scored for each Transition, where Team A is the home team; gray boxes are transitions with zero probability.

Kenny Shirley, Ph.D.THE IDEA
I model a basketball game as a sequence of transitions between discrete states. Specifically, 
the model is a Markov chain, which specifies that the probability distribution of the next state 
depends only on the present state. A good Markov model for basketball must, in my opinion, 
strike a compromise between being, on one hand, very detailed and complex, so as to capture 
all of the relevant (and sometimes rare) events that can occur during a game, and on the other 
hand, simple enough to fit and interpret, so that interesting strategic questions can be 
answered. A minimum requirement for the complexity of the Markov model is that the exact 
number of points scored by each team is determined by the transition count (i.e. the same 
transition cannot lead to different numbers of points scored at different times).

THE DEFINITION OF THE STATES
The states of the Markov chain are defined in terms of three factors:
1. Which team has possession (2): Home or Away
2. How that team gained possession (5): Inbound pass, Steal, Offensive Rebound, Defensive 

Rebound, Free Throws.
3. The number of points that were scored on the previous possession (4): 0, 1, 2, or 3.

The largest possible model would have 2 x 5 x 4 = 40 states, but since certain combinations of 
the 3 factors are impossible, the largest model (Figure 1a), has 30 states. Making certain 
assumptions about the course of action in a basketball game can further reduce the number of 
states. If one assumes, for example, that rare events like 4-point plays or loose ball fouls 
following missed free throws are impossible, then certain states can be eliminated without 
seriously affecting the usefulness of the model. The notation is relatively simple: Ai(2), for 
example, means that Team A gained possession via an inbound pass after 2 points were 
scored.

THE GOALS OF FITTING THE MODEL
If a Markov model fits the data well, then it can provide a very detailed “microsimulation” of 
a basketball game. Quantities of interest can be computed via simulation. Some examples of 
these might be (1) In-game win probabilities for a given team, (2) The expected number of 
points scored in a possession gained in different ways, such as offensive rebounds vs. 
defensive rebounds, and (3) The change in win probability as a function of the number of 
possessions in a game; i.e. how useful a strategy is it to “slow down the game?”

PREVIOUS WORK
Hal Stern (1994, JASA Vol. 89, p. 1128-1134) developed a Brownian motion model for the 
progress of sports scores that fits well for basketball, yielding good in-game win probability 
estimates. Two specific drawbacks to the Brownian motion model that Stern mentions are (1) 
The relative strengths of two teams playing are not included in the model, and (2) Which team 
has possession is not included in the model. The Markov model certainly incorporates the 
second piece of information, and can be fit to include the first as well. (Stern’s model can be 
extended to incorporate team strengths as well – although it hasn’t actually been done to my 
knowledge.)
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PILOT STUDY
An 18-state model was fit using season-long summary data from the 2003-2004 NBA season. 
States that corresponded to rare events were eliminated (so as to reduce the model to 18 
states), and the remaining transition probabilities were estimated using statistics like 2-pt FG 
%, 3-pt FG%, rebound % (off. and def.), steals and turnovers, for each team and its opponents. 
Win probabilities for each team, in a game vs. their average opponent, were estimated by 
simulating 1000 games per team. These win probabilities are very close to the actual winning 
percentages (Figure 2), suggesting that the Markov model does a good job of capturing the 
essence of play. That is, given estimates of transition probabilities and of the number of 
transitions in a game, the Markov model simulates realistic results.

Figure 2: A plot of actual winning % vs. predicted winning %, where predictions were made 
using season-long summary statistics and simulations. On the scale of wins, the average 
error was about 3.3 wins out of 82 games.

Figure 3: Estimated transition probabilities for 30-state model without incorporating team-specific variables. A Bayesian model with a flat Dirichlet prior was 
used to estimate each row of the transition matrix as a multinomial distribution. Also, data was pooled for estimating transition probabilities for rows in which 
a team acquired possession the same way. The last column contains the expected number of points scored in the next transition, given the current state.

HOW DO WE COLLECT DATA?
The sequence of plays below occurred during the 1st quarter of the 4/6/07 Cleveland @ Washington game. CLE, the visitor, is coded as Team B in the 
Markov model. Notice the highlighted event: The standard play-by-play failed to record a WAS deflection following a CLE steal sometime between 2:55 
and 2:39, whereas this event is represented by a transition in the Markov model, from state Bs to state Bi(0).

THE FIT OF THE MODEL
The model was fit to a very small sample of 18 quarters (4.5 games) of NBA 
basketball from the 2006-2007 season. There were 1162 transitions recorded in 
this sample, yielding an estimate of about 260 transitions per game. Figure 3 
contains Bayesian estimates of the transition probabilities, in which states that 
shared the same method of gaining possession of the ball were constrained to 
have the same transition probabilities. With more data, this constraint can be 
lifted, but with such a small sample, I think the benefits outweigh the costs.

The expected number of points scored from each state is calculated and displayed 
in the rightmost column of Figure 3. For the home team (Team A), offensive 
rebounds are the best way to gain possession, followed by steals, defensive 
rebounds, and finally the inbound pass (free throws aren’t as interesting to 
analyze here). For the away team (Team B), surprisingly, defensive rebounds 
produce the most points on average. I strongly suspect this is an artifact of the 
small sample and that with more data, the expected points vector for the away 
team would look much like that for the home team, except slightly less.

To estimate the total number of points scored by each team in a full game using the Markov model, I just calculate the stationary 
distribution of the transition matrix, which yields the long-run probabilities of being in each state, and multiply this by the expected points 
vector, and then multiply the product by the estimated number of transitions in a game, which is about 260. This yielded an expected score 
of 96.8 – 91.4 in favor of the home team, which is roughly consistent with other estimates of total points and home court advantage.
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WIN PROBABILITY AS A FUNCTION OF THE NUMBER OF TRANSITIONS AND 
WHICH TEAM HAS POSSESSION
How does the number of transitions in the game affect the probability of the home team winning? Since the home team is the favorite, the 
more transitions that occur, the higher should be the probability the home team wins. Interestingly, Figure 4a (below, left) shows that this 
probability is almost constant for the entire range of realistic numbers of transitions – the (average) home team always has about a 61-65% 
chance of winning! This result seems to suggest that the randomness inherent in each possession swamps the difference in win probabilities 
for a wide range of transition counts - a somewhat surprising find that needs closer inspection. If themodel proves to be a good fit, then 
this result means that there is no use in “slowing down” or “speeding up” the game in order to gain a strategic advantage – just make more 
shots!
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Figure 4b (above, right) attempts to answer the question of how important it is to know which team currently has possession in order to 
estimate the win probability of the home team, as a function of the number of transitions left in the game (which is never known, but 
possibly can be estimated), and the home team’s lead. The figure shows the difference in win probabilities for the home team for two 
starting points: Ai(0) and Bi(0). Not surprisingly, as the number of transitions remaining increases, the current possession of the ball is 
less important – in the lower right hand corner of the plot, the difference is about zero. But as the number of transitions left decreases, 
the current possession of the ball becomes more important, until for a very small number of possessions left, and a larger lead for the 
home team, there is a great difference between win probabilities for the situations Ai(0) and Bi(0). This confirms that the Brownian 
motion model misses some potentially important information near the end of a game, because it doesn’t account for which team 
currently has possession.

THE NEXT STEP
If we model rows of the transition matrix using multinomial logit models, then we can incorporate effects for the individual teams into 
the transition probabilities, resulting in one “baseline” transition matrix, and then a unique transition matrix for every matchup between 
teams. This model would most likely incorporate 4 x 10 x 3 x 2 =240 parameters. In a basketball season, there are about 320,000 
transitions total. With about half a season of data, I think fitting the large model with team strength parameters would be possible. For 
the time being, we need more data! THANKS!
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