The Tennis Formula: How it can be used in Professional Tennis

A. James O'Malley

Harvard Medical School

Email: omalley@hcp.med.harvard.edu

September 29, 2007

Overview

- Tennis scoring
- The tennis formula and its properties
- Other tennis-related formulas
- Applications of tennis formula
- Future work

Scoring in tennis

- points: love, 15, 30, 40, deuce, advantage.
- games: love, 1, 2, 3, 4, 5, 6, (7).
- sets: love, 1, 2, (3).
- first to win four points or more by margin of two wins the game.
- first to win six games by margin of two or otherwise seven games wins the set (tiebreaker at six all).
- first to win two (or three) sets wins the match.

"Tennis Formula"

- Let *p* denote the probability that a player wins a single point serving.
- Assume probability is fixed throughout game (match).

$$ext{Pr(Win game)} = p^4 + 4p^4(1-p) + 10p^4(1-p)^2 \ + 20p^3(1-p)^3 \cdot \frac{p^2}{1-2p(1-p)} \ = p^4 \left(15 - 4p - \frac{10p^2}{1-2p(1-p)}
ight)$$

Properties of tennis formula

- Asymmetric point of inflection at p = 0.5.
- Monotone increasing
- Derivative function reveals where improve performance is most beneficial.

$$rac{d ext{Pr}(p)}{d p} = 20 p^3 \left(3 - p + rac{5 p^3 - 3 p^2 + 4 p^4}{(1 - 2 p (1 - p))^2}
ight)$$

• Integral function gives probability of winning when serving probability selected at random.

$$\int_0^p \Pr(x) dx = -rac{2}{3} p^6 + 2 p^5 - rac{5}{4} p^4 - rac{5}{6} p^3 + rac{5}{4} p + rac{5}{8} \log(1 - 2 p(1 - p))$$

- Average over whole range $\int_0^1 \Pr(x) dx = 0.5$.

Other probabilities

- Probability of winning:
 - tie-breaker.
 - set or match.
 - from a break down in final set.
- Derive similarly to the tennis formula; using tree diagram/dynamic programming approach.

Probability of winning tiebreaker

- Tie-breaker is longer than a regular service game.
 - Involves both players serving, q = opponents probability of winning point on serve.
 - When q = 1 p expect curve to be steeper than for the tennis formula.

Probability of winning set and match

- Functions of game and tie-breaker winning probabilities.
 - Thus, also of point-winning probabilities.
- Interested in how steeply odds favor better player.

Comparison of tennis formula to empirical data?

- Formula's are based on assumptions:
 - Independence between points.
 - Homogeneous probabilities.
- Obtained data from Wimbledon 2007 (Mens singles).
- Compare empirical game winning percentages to predictions.

Lack of homogeneity of points across game

- 118 saves out of 208 break points, $p_{\text{save}} = 0.549$.
- 2,101 out of 3,156 service points won at other stages of game, $p_{\text{other}} = 0.666$.
- P-value of difference ≈ 0.0053 .

Applications of tennis formula

- By players to focus training efforts.
- By players to evaluate where to concentrate match preparation.
- By commentary teams to make broadcast more interesting.
- Useful in determining effect of a rule change.

Training and match preparation

- Compute proportion of points one on serve and while receiving against all opponents.
- Evaluate corresponding probabilities of winning a match.
- Determine if more beneficial to improve serve or return game.
- Work on improving that aspect of game.
- Could extend this by averaging over types of opponents (left-handers, right-handers) to obtain more accuracy.
- Before playing a match analyze head-to-head data.

Example

- Probability win service point = 0.65.
- Probability win receiving point = 0.37.
- Probability win 3 set match = 0.5985.
- Suppose focused training could improve serve probability by 1.1 percentage points or return by 1 percentage point. Where to focus effort?
- If improve service by 10%: Pr(match) = 0.6497.
- If improve return by 10%: Pr(match) = 0.6466.
- Better to improve serve!

Making tennis commentary more interesting

- Report likelihood that each player wins match if:
 - Current point-winning percentage is maintained.
 - Players revert to historical winning proportions.
 - Probabilities became equal.
 - Stopped playing and tossed a coin.
- Calibrate statement "match is effectively over if player A breaks serve".

Chance of winning when break down in final set.

	Scenario			
	p = 0.62	p = 0.67	p = 0.645	p = 0.5
Situation	q = 0.67	q = 0.62	q = 0.645	q=0.5
4-5	0.1420	0.2165	0.1775	0.2500
3-5	0.0880	0.1451	0.1145	0.1250
2-5	0.0546	0.0972	0.0738	0.0625
3-4	0.2033	0.3038	0.2513	0.3125
2-4	0.1371	0.2217	0.1765	0.1875
1-4	0.0850	0.1486	0.1139	0.0938
2-3	0.2350	0.3526	0.2914	0.3438
1-3	0.1675	0.2716	0.2162	0.2266
0-3	0.1145	0.2006	0.1538	0.1367

Rule change

- In 1999 a change in the scoring of tennis was proposed.
- Replace deuce-advantage system with sudden death.
- At deuce the next point decides the game.
- Pete Sampras was against, Andre Agassi supported, the change.

New Tennis formula

• Probability of winning game under new scoring system changes to:

$$\operatorname{pr}(\operatorname{game} - \operatorname{new}) = p^4 + 4p^4(1-p) + 10p^4(1-p)^2 + 20p^4(1-p)^3$$

• Compute change in probability of winning match.

Sampras-Agassi Data (from 1999)

Statistic	Sampras	Agassi
Serving point	0.709	0.657
Return point	0.371	0.418
Pr(Win match - new)	0.8210	0.8092
Pr(Win match - old)	0.8331	0.8296
Net gain	-0.0121	-0.0205

Future work

- More realistic models allow probabilities to vary through stages of match.
 - At deuce, on break- or set-points, between sets.
- Use models to examine player performance at crucial stages of a match.
 - When to be most wary or optimistic against certain opponents.